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Abstract 

This Sustainable Development Goal (SDG 7) analysis addresses critical challenges through three questions, backed 
by literature and evidence. Environmental, social, and governance concerns were discussed. A notable SDG target 
shortfall was observed from International Renewable Energy Agency, International Energy Agency, and United 
Nation’s publications. Urgent actions include refining greenhouse gas emission equivalent estimations and estab-
lishing unified life cycle assessment standards. While prioritizing renewables, minimizing dependence on non-
renewables for a lower carbon footprint is vital. Balancing energy production with per capita consumption reduction, 
especially with a growing population, is key to achieving net-zero emissions. This solution demands a thoughtful 
evaluation of challenges tied to specific renewable technologies and their socio-economic impact. Balancing eco-
nomic growth, crisis response, and resource management is crucial for acheiving SDG 7 targets.
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Introduction
Fossil fuels (GT), actuating the progress of human civi-
lization from the industrial age (1800) to current era of 
economic growth (2023), provides the essentials in the 
form of electricity for various aspects of modern life, 
including transportation, thermal comfort, industrial 
processes, refrigeration, medical care, agriculture (food), 
electronics, and beyond [1–6]. However, burning of fossil 
fuels and deforestation, primarily accounts for the esca-
lating greenhouse gas emissions (GHG) (Major:  CO2, 
 CH4 Minor:  N2O,  H2O,  O3, CFCs) driven by the seven 
largest emitters (China, India, USA, EU, Indonesia, Rus-
sia, Brazil), which has contributed to ~ 50% of the climate 

change (GT) in 2023, (Floods in Libya, North Africa, 
2023 [7]) [8, 9]. To combat these climate challenges and 
to improve the quality of human’s life, the United Nations 
(UN) has set SDGs (GT) encompassing 17 goals, 169 
objectives, and 231 indicators [10]. SDG7 (GT) empha-
sis on providing affordable and sustainable energy (GT) 
to aid in achieving netzero (GT) emissions by 2050 (Paris 
Agreement, SDG 13) (GT) and has interrelations between 
other SDGs (Fig. 1). Without reliable access to energy, it 
becomes challenging to eradicate poverty (SDG 1) as it 
limits opportunities for income generation and hinders 
access to essential services. Moreover, quality educa-
tion (SDG 4) is compromised without reliable energy for 
schools, and good health (SDG 3) is jeopardized without 
power for healthcare facilities. The objectives of SDG7 
involves increasing the adoption of renewables (GT), 
achieving a twofold enhancement in energy efficiency, 
fostering stronger international cooperation, technologi-
cal and infrastructural progress, which are accessed by 
metrics including accessibility to electricity (%), adoption 
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of clean cooking technologies, utilization of renewable 
energy (GT), improved energy efficiency (J or kWh), 
investments in clean energy (USD or EUR), and carbon 
emissions per unit of electricity generated  (gCO2/kWh) 
[9, 10]. Figure  2a depicts the energy market evolution 

from 1900 to 2023. Wind and solar energy costs dropped 
significantly, from 100 USD/MWh in 2014 to 30 USD/
MWh in 2022. This signals a strong global push to phase 
out fossil fuels by 2030. The globe requires > 50% of 
reduction in GHG emissions by 2030 to limit warming to 

Fig. 1 Interrelations between other SDGs and SDG 7 (SDG 7, centred on affordable and clean energy, directly, curtails reliance on costly 
and polluting fuels, thereby addressing poverty (SDG 1) while facilitating clean energy for healthcare services (SDG 3) and sustainable urbanization 
(SDG 11) through reliable infrastructure and power. It also aligns with responsible consumption and production (SDG 12), with lesser consumption 
of resources and reduced negative effects on ecosystem. Indirectly, SDG 7 supports all kinds of agricultural practices that promotes sustainability 
(SDG 2), elevates educational quality (SDG 4), empowers women by creating Jobs (SDG 5), facilitates clean water access (SDG 6), drives economic 
expansion (SDG 8), spurs technological innovation (SDG 9), advances social equality (SDG 10), aids climate change mitigation (SDG 13), safeguards 
biodiversity (SDG 14, SDG 15), and fosters peace, justice, and collaborative partnerships (SDG 16, SDG 17). This interconnectedness underscores 
the importance of SDG 7

Fig. 2 a Schematic timeline of energy transition and global initiatives from 1990 to 2023, here NDC means Nationally Determined Contributions 
(b) Consumption of fossil fuels from 1800 to 2023 and their projected depletion in years (data used under CC license from [16]and [17] Energy 
Institute Statistical Review of World Energy (2023); Vaclav Smil (2017)) (c) Global warming anomaly (data obtained from [16] and [18, 19]) (d) % 
share of renewables equivalent installed in major marketable countries. (All data used and analyzed were obtained from [20] and Ember’s European 
Electricity Review; Energy Institute Statistical Review of World Energy [21], curated and filtered) (e) % of electricity contributed from renewables 
in Association of Southeast Asian Nations (ASEAN), Africa, Asia, Australia, China, Europe, India, UK and Us (Note: Europe includes majorly Germany, 
Spain, UK and Finland)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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1.5 °C, which is globally supported by shifting to renewa-
bles. According to [11] and Fig. 2a SDG7 targets energy 
poverty and vulnerability, particularly affecting specific 
social groups, but lacks emphasis on absolute demateri-
alization (GT). Further, the shift to renewables may inad-
vertently increase production sites in rural areas with 
lower land values and formalized land rights [11]. Pre-
vious reports suggest that the SDG framework broadly 
focusses on Greenhouse gas (GHG) emissions and decar-
bonization, accentuating less on technology and socio-
economic scenarios [10, 12–15].

In this analysis, we focus on addressing three primary 
challenges associated with transition to renewables, con-
sidering their environmental (E), social (S) and Govern-
ance (G) impact in compliance with SDG7: Target 7.1 
(Ensure universal access to affordable, reliable, and mod-
ern energy services). The ’Just Transition’ [22] to renewa-
bles involves broader assessment and has complexities 
related to long-term productions, job security, financial 
hurdles, which are yet to be clearly addressed.

Challenge 1 (E): The emissions stemming from equip-
ment production, infrastructure development, trans-
portation, and eventual decommissioning and end-of-life 
waste management (GT) of renewable energy sources 
necessitate a deeper understanding on how it balances 
the long-term emissions from fossil fuels. Is the transi-
tion to renewable energy truly sustainable?

Challenge 2 (S): Gap exists between fair employment 
opportunities for workers affected by job displacement 
from Oil & Gas to renewable energy. Additionally, meas-
ures are still needed to bridge the energy efficiency gap 
between affluent and resource-constrained communi-
ties, preventing the potential augmentation of socio-eco-
nomic disparities.

Challenge 3 (G): While developed nations extend sup-
port, the high initial costs of renewable technologies 
(hydropower and concentrated solar power) hinder the 
progress in low-income countries. however, acknowledg-
ing this trade-off may temporarily benefit low-income 
households and may develop affordability gaps across 
income groups. How can governments implement meas-
ures to alleviate these upfront expenses ?

Before addressing the challenges, three key questions 
assisted by literature [8, 11–15, 23–33] and factual evi-
dence from International Renewable Energy Agency 
(IRENA), International Energy Agency (IEA), Energy 
Information Administration (EIA), The World Bank 
Group, British Petroleum (BP), World Resources Insti-
tute (WRI), Global Wind Energy Council (GWEC), Solar 
Energy Industries Association (SEIA) | https:// www. iea. 
org/ | https:// www. eia. gov/ | https:// www. irena. org/ | 
https:// www. seia. org/ | https:// gwec. net/ | https:// www. 

wri. org/ | https:// www. bp. com/ | https:// www. world 
bank. org/ en/ home are introduced to analyse the listed 
challenges, accompanied by the constructive suggestions 
of the authors.

1. Does relying solely on renewables offer an affordable, 
reliable, and sustainable energy solution?

Transitioning to renewables by 2050 could save up to 
$12tn globally but requires a drastic reduction in fossil 
fuel production and consumption [33]. Figure  2b illus-
trates the consumption trend of fossil fuels from 1800 
to 2023, along with the projected years remaining until 
their depletion: Coal (140), Oil (57), and Gas (49). With 
energy demand spiking 2.3% in 2018, and a projected 
3.4% Gross Domestic Product (GDP) growth by 2040, 
thus the priority should be improving the energy effi-
ciency of existing systems. In 2022, oil demand increased 
by 2.3 mb/d, and projections for 2023 indicated a growth 
of 1.7 mb/d (IEA 2023) [34]. Roughly 83% of oil reserves, 
primarily in Canada, should remain untapped (~ > 3% 
decline in oil consumption is required each year till 
2050). Thus, shifting to natural gas is the next priority, 
given its abundant reserves (7,124 trillion cubic feet, 
2018) [35]. Figure  2c underscores the urgency of this 
transition, with sea temperatures surging from -0.4℃ 
in 1990 to 0.9℃ in 2023. This alarming trend poses a 
threat to aquatic habitats [34, 36]. Rising sea tempera-
tures threaten marine ecosystems, causing disruptions 
in species life cycles, coral bleaching, and biodiversity 
loss. This underscores the urgency of mitigating human 
activities linked to climate change to protect marine 
environments.

The literature reviewed in this study were chosen 
from Scopus, based on the selection criteria, men-
tioned in appendix. Based on [37–46], we agree that 
primary challenges include time and financial con-
straints. These are exacerbated by the intermittent 
nature of renewables, requiring auxiliary energy stor-
age and grid upgrades for integration. However, con-
sidering long-term viability, we assert the obligation of 
deep analysis on (i) technological maturity (given the 
continuous innovation in renewables, standardization 
remains as a challenge), (ii) economic viability (return 
on investments, resource availability, market competi-
tion & impact, access to capital among other externali-
ties), (iii) subsidy dependence (with implications for 
market distortion and inequalities), (iv) Levelized Cost 
of Electricity (LCOE) (should include life cycle assess-
ments and extended producer responsibilities) [47], 
and (v) regional needs (not an exhaustive list). Thus, a 
broader assessment is required for this paradigm shift.

https://www.iea.org/
https://www.iea.org/
https://www.eia.gov/
https://www.irena.org/
https://www.seia.org/
https://gwec.net/
https://www.wri.org/
https://www.wri.org/
https://www.bp.com/
https://www.worldbank.org/en/home
https://www.worldbank.org/en/home
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2. What is the current level of accessibility to renewable 
energy, and how swiftly are we progressing towards 
broader availability? Additionally, what are the pro-
jected trends?

Renewable energy comes from naturally replenish-
ing sources, offering lasting potential but limited short-
term outputs (EIA 2020). Figure 2c, d shows the 50% of 
renewables contributions in major marketable countries 
(Germany, US, Brazil, and China have highest contribu-
tions). The per capita installed capacity for renewable 
energy generation in > 230 developing nations exclud-
ing pumped hydrogen increased overall from 104 W in 
2013 to 241 W in 2022, with this trend the projections 
are ~ 630 W in 2050, which means additional ~ 30% 
increase in production or decrease in consumption is 
needed to meet the targets [16]. In 2013, the installed 
solar energy capacity was 141417 MW, which grew to 
1061630 MW in 2022. However, concentrated solar 
power’s installed capacity is less (6602 MW) due to its 
high initial investment. Bioenergy, derived mainly from 
organic waste, constitutes over ~ 40% of total renewa-
bles, followed by wind, hydro, and geothermal energy 
[48]. Wind energy, harnessed from both onshore and 
offshore turbines, has seen remarkable growth in the 
past two decades. Overall, major contributors to renew-
ables include China, India, Brazil, Germany, the UK, 
and the USA, Australia, Japan, etc., while regions in 
Asia (Indonesia, Thailand, Philippines, Vietnam, Bhu-
tan, Sri Lanka, Myanmar, etc.), Africa (Congo, Liberia, 
Angola, etc.), and Europe (Denmark, Norway, Nether-
lands, Romania, etc.), Middle east could benefit from 
increased contributions [16, 49].

3. Are the current levels of financial investment in 
renewables adequate to progress in this transition?

In 2022, global renewable energy investment reached 
$0.5 trillion, marking a 19% increase from 2021 and a 70% 
surge from pre-pandemic 2019 levels. In 2020, solar pho-
tovoltaic received 43% of total renewables investment, 
followed by onshore and offshore wind at 35% and 12% 
respectively [25]. However, this falls short of the annual 
average needed from 2023 to 2030, underscoring the 
urgency to boost investments in off-grid (G) renewables, 
especially in solar. Regional disparities persist, with over 
half of the global population in developing nations (Sub-
Saharan Africa, Middle East) receives only 15% of global 
investments, whereas Europe and US leads by ~ 40% in 
2020 [16]. Redirecting $1 trillion annually from fossil 
fuels to energy-transition-related technologies in devel-
oping countries is needed [25].

Sustainability of the renewable energy
The transition to renewables is paradoxically reliant on 
non-renewable resources, particularly mined metals. 
In 2020, mining operations for materials essential to 
renewable energy production was ~ 16% of wilderness 
areas and the production of a single ton of rare-earth 
and toxic elements (La, Nd, Sr, Te, Cd of ~ 5 to 10  g/
m2 for PV [50] etc.) generates ~ 2,000 tons of waste. 
Life cycle assessment (LCA) (G) studies are necessary 
for addressing the environmental concerns of major 
marketable renewables (solar, wind, hydro, geothermal 
and others). The methodology of LCA analysis for solar 
PV and wind is stated elsewhere [51–53] The installed 
capacities of renewables as per IRENA is shown in 
Table 1.

Coal emissions increased ~ 1.6% (243 Mt), while oil 
emissions rose by 2.5% partly due to increased aviation 
in 2022 compared to 2021. The biggest spike in emis-
sions (1.8% or 261 Mt) occurred in electricity and heat 
generation, predominantly from coal sources, particu-
larly in emerging ASEAN economies [54–57]. The US 
saw a 0.8% increase (36 Mt) in emissions, largely due 
to peak electricity demand during summer heat waves. 
The analysis in Table 2 and Fig. 3 reveals that biomass 
and nuclear energy production result in higher  CO2-e 
emissions compared to solar and wind energy. Hydro-
electric energy falls in the mid-range in terms of emis-
sions. Moreover, solar and biomass energy have lower 
initial installation costs, and the payback period is 
shorter for solar, wind, and geothermal energy. When 
considering sustainability, renewables can be ranked 
from highest to lowest as follows: solar, hydroelectric, 
wind, biomass, geothermal, and nuclear.

However, the concept of  CO2-e emissions indeed 
poses several challenges in the context of GHG reduc-
tion efforts. Firstly, it fails to distinguish between spe-
cific greenhouse gases like  CO2,  N2O,  CH4 as well as 
other less prevalent but potent gases. This lack of speci-
ficity can be problematic because different gases have 
varying levels of global warming potential (GWP) and 
different lifetimes in the atmosphere. For instance, while 
 CO2 is the most prevalent GHG, its long-term impact 
is more enduring than shorter-lived but highly potent 
gases like  CH4. Consequently, a reduction in  CH4 emis-
sions might have a more immediate and significant 
impact on mitigating global warming. Furthermore, 
 CO2-e labelling may not accurately reflect the true envi-
ronmental and economic costs associated with each 
greenhouse gas. Calculating GWP involves a degree of 
ambiguity, as it depends on complicated models and 
discrepancies in published literatures [18, 21]. This 
ambiguity can make it challenging to accurately price 
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GHG emissions, potentially leading to misallocations of 
resources in mitigation efforts.

Equitable employment opportunities
Increasing Human development Index (HDI) and 
higher degree holders imply progress in education and 
socio-economic status (Fig. 4a) [86]. However, there is 
a potential downside. Individuals may find themselves 
accepting jobs with lower pay and positions in energy 
sector that do not align with their educational qualifi-
cations. Additionally, employment in coal industries 
has drastically reduced (Fig.  4b). The shift to net-zero 
emissions could create 9 million new energy sector 
jobs by 2030, despite an estimated loss of 5 million in 
fossil fuel production. Additionally, clean energy sec-
tors, encompassing efficiency, automotive [87–93], and 
construction, could generate over 30 million jobs by 
2030, offering new opportunities in emissions-reducing 
technologies (Fig. 4c) [94, 95]. However, the transition 
has led to job displacement in fossil fuel-reliant com-
munities, particularly in coal. This shift from Oil & 
Gas to solar and wind energy has resulted in fewer job 
opportunities compared to the offset in oil and gas as of 
2023. Both industries rely on imports, potentially lim-
iting local job growth in countries like US, Singapore, 
and Australia (Fig.  4d). Transitioning to renewables 
demands workforce retraining, and encounters resist-
ance from fossil fuel interests, potentially causing social 
disruptions in communities heavily reliant on fossil 
fuels [96, 97]. For instance, petroleum related jobs are 
localized but crucial for many local economies. While 
the energy sector constitutes a small portion of global 

employment (1.2%), in places like Saudi Arabia, it sig-
nificantly contributes to GDP (50%) despite employing 
a smaller percentage (4.8%) [94, 98].

The top companies in Oil & Gas, renewables, and their 
number of employees as per 2022 is listed in Fig. 4e. The 
Oil & Gas, industries, including Saudi Aramco, Chev-
ron, ExxonMobil, British Petroleum (BP) and Royal 
Dutch Shell currently have more employees than renew-
able industries (NextEra Energy, Vestas Wind Systems, 
Siemens Gamesa, and Enel Green Power); however, the 
recruiting counts of Oil & Gas, have slightly reduced in 
2022. Former coal workers often find replacement jobs 
with lower pay and skill gaps (Fig. 4f ). Fossil fuel workers 
also tend to earn more and have higher health insurance 
coverage compared to solar and wind workers. Coal-
linked pension funds suffer due to economic decline, 
impacting communities. Areas with power plants and 
mines experience lower education rates and income 
instability. Coal closures lead to reduced local tax rev-
enue, resulting in budget cuts, school closures, and job 
losses [103]. The transition can increase energy insecu-
rity, disproportionately affecting low-income individuals. 
In 2018, United Steelworkers represented 18% of petro-
leum workers, while solar and wind workers had lower 
unionization rates (4% and 6% respectively) [94, 98].

While the shift towards renewable energy is crucial 
for environmental sustainability, these economic and 
social consequences highlight the need for comprehen-
sive support measures for affected communities and 
workers. Existing energy workers possess skills transfer-
able to clean roles, such as in wind, carbon capture, and 
low-carbon gas. Restoring closed mines can maintain 

Table 2 Essential criteria to access the sustainability of renewable technologies, includes cost, payback period, and  CO2-equivalent 
 (CO2-e) emissions (EROEI – Energy Return on Investment)

Technology Costs Involved for 
1 MW production 
($million)

Energy 
payback 
time

EROEI and 
Reproduction 
Potential

Possible toxic elements present Emissions (g  CO2-eq/kWh)

Polycrystalline Si PV 1 to 1.5 6 to 48 20 – 40 Pb,  SiCl4, Cu 60.1 for 10 MW/year; 50 to 60; 
64.2; 41.8; 65.2; 671 [58–64]

Thin film PV 900,000 to 1.8  > 12 NA Cr, As, Cd, Pb, Te, Cu, Se, In, Ga 40; 12 to 70; 20; 14; 26 [58, 65]

Wind Onshore: 1.3 to 2.2
Offshore: 2.5 to 4

 < 24 18 – 35 Pb, Nd, Dy, Pr, Hg, Asbestos, Be, Cd 34.11; 1.7 to 81; [66–69]

Hydroelectric 2 to 5  < 24 10—80 Hg, Cd, Cr, Ni 50 – 300 [68, 70–72]

Geothermal Dry Steam: 2 to 5
Flash Steam: 3 to 8
Binary Cycle: 2 to 6

2 to 10 3.6 – 6 H2S, B, S, As, Sb, Tl, Hg 1.7 to 81 [73, 74]

Biomass 500,000 to 2 6 to 24 3 – 20 Aromatic Hydrocarbons, Dioxins 
and Furans, Cl and S, Particulate Matter

100 to 400 [67, 70, 71]

Nuclear Traditional: 6 to 9
Small Modular 
Reactors (SMRs): 
4 to 6

 > 24 75 – 150 U, Pu, Cs-137, Sr-90, I-131, C-60, Tc-99 m, 
Np, Actinides

12; 14; 120; 150 [67, 75, 76]
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Fig. 3 Major stages of carbon emissions in renewables (a)  CO2 emissions from Commercial PV modules (adapted from IEA, 2021) (b) Emissions 
 (CO2-e) from wind energy harvesting (data adapted from [77–83] (c) Emissions from hydro compared with other renewables (data adapted 
from [84]) (d) GHG emissions tracking from biomass such as soybean, canola, carinata and tallow (reused with permission from [85])
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post-closure jobs [49]. Focusing on qualified workers and 
inclusive support is vital for clean energy jobs, ensuring 
safety, equity, and inclusion in affected communities. 
Government support with inclusive criteria drives eco-
nomic development and public acceptance. The Global 
Commission is shaping principles for diverse transitions, 
guiding IEA’s efforts and COP26 input. The overall pro-
gress in SDG 7 is shown in Fig.  5a-f. Access to invest-
ments in green energy was identified as unstable (7.A.1), 
indicating a need for increased attention and focus.

Affordability gaps in renewable adoption
Affordability gaps in renewable adoption stem from high 
initial costs, rapid tech evolution, and economies of high-
income favouring larger projects (Fig.  5e, f ). This could 
particularly affect low-income households, who already 
allocate a significant portion of their income to energy 
expenses [110]. In 2022, energy investment is set to surge 
by 8%, but almost half of this increase is due to rising 
costs rather than expanding capacity or savings. These 
cost hikes are driven by supply chain strains, labour 
shortages, and increased prices for materials like steel 
and cement. However, higher prices alone can’t ensure 
sustainable choices, especially in less affluent nations 
with inadequate policies [110–112].

Power generation projects in renewables and grids 
often rely on debt, while smaller ventures or areas with 
limited credit use equity more. Although advanced econ-
omies have easier access to debt, equity remains crucial 
for emerging sectors. Power generation costs range from 
3–7% depending on the region [113, 114]. It’s unfair for 
developing economies to bear the full cost of the transi-
tion. Currently, increasing fossil fuel prices dispropor-
tionately affect Asia and Africa, with an estimated 90 
million struggling to afford energy. This raises concerns 
about possible energy poverty, affecting nearly 90 million 
people in Asia and Africa struggling to meet basic energy 
needs [111, 115].

In the solar sector of Emerging Market and Develop-
ing Economies (EMDE), institutional investors grapple 
with hurdles. A key obstacle is the limited availability 
of instruments tailored for solar ventures. Additionally, 
institutional investors in EMDE prioritize liquid assets 
like equity, bonds, and structured finance, discouraging 
solar investments. Low credit ratings of solar corporate 

bonds in EMDE further dissuades participation. To navi-
gate complexities and mitigate risks, investors often rely 
on intermediaries like debt funds. Unfortunately, a short-
age of specialized financial services exacerbates these 
challenges, hindering the realization of solar energy’s 
potential in these economies [116, 117].

Closing the investment gap in emerging economies 
is crucial for equitable climate action and sustainable 
development. Additional financial and technical support, 
including concessional and private sector capital, are 
pivotal. Without a substantial increase in clean energy 
investment, global efforts to combat climate change and 
achieve sustainability goals will face significant chal-
lenges. Geopolitical events are prompting investments in 
various fuels, including coal in emerging Asian markets 
[111, 116]. Additionally, rising prices of critical minerals 
are emphasizing the importance of mining, refining, and 
processing in the transition to more sustainable energy 
systems. Institutional investment in renewable projects 
can be facilitated with essential risk-mitigating tools 
such as guarantees and insurance. Partial credit guaran-
tees from international development institutions bolster 
bond ratings, and solar debt funds with public first-loss 
protection appeal to low-risk investors. The Interna-
tional Solar Alliance (ISA), Global Wind Energy Council 
(GWEC), Alliance for Rural Electrification (ARE), Global 
Biofuel Alliance (GBA) (GBA- led by India as the G20 
Chair, to accelerates global biofuel adoption) and IEA are 
actively working on solutions to enhance capital acces-
sibility. Coordinated efforts and innovative strategies are 
imperative to close the renewable energy investment gap 
and align with Paris Agreement, SDG objectives [111, 
115–117].

Summary and outlook
Conclusion
This article compiles data and information regarding the 
current progress in renewable energy development. The 
speed of this transition is lagging and uncertain, contin-
gent on various factors including policy support, techno-
logical advancements, and economic considerations. We 
have underscored three challenges, the need for more 
comprehensive and standardized reporting standards 
for GHG emissions from renewables, the trade-offs in 

Fig. 4 a Evolution of human development index (HDI), which is proportional to employment (data adapted from Our world in data [86, 99] [99]) 
(b) Total employment in coal industries in UK from 1890 to 2022 (data adapted from Our world in data [86, 99]) (c) Global employment in terms 
of number of Jobs as per 2022 (World Bank, IEA, Our World in Data [100]) (d) Job shift towards renewables marked by individual countries 2022 
(World Bank, IEA, Our World in Data [99]) (e) Top companies in O &G, renewables and NOE – Number of Employees (World Economic Forum, 
Thomson Reuters, Wikipedia) (f) Comparison of wages in fossil fuels and renewables sector (data adapted from [101] and [102])

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Fig. 5 Mapping the progress in SDG 7 individual goals (a) 7.1.1 Proportion of population with accessibility to electricity (b) 7.1.2 Access to green 
fuels for cooking (c) 7.2.1 Renewable energy share in total energy consumption (d) 7.3.1 Energy Intensity measured in GDP and primary energy 
consumption (e) 7.A.1 Investments in clean energy (f) 7.B.1 Energy services for developing countries. (Data adapted from Our World in Data, World 
Economic Forum [104–109])
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job opportunities, and affordability gaps for low-income 
communities in adopting renewable technologies. The 
following analysis were made,

• The United States witnessed a 0.8%  CO2 emission 
increase (36 Mt), primarily due to increased electric-
ity demand during summer heat waves. Solar and 
biomass energy showed promise with lower installa-
tion costs and shorter payback periods. When assess-
ing the sustainability of renewables, solar, hydroelec-
tric, wind, biomass, geothermal, and nuclear energy 
were ranked from highest to lowest sustainable. 
Immediate challenges to address are the issues asso-
ciated with the credibility of  CO2-equivalent emis-
sions. The method lacks specificity in distinguishing 
between different gases, such as  CO2 and  CH4, each 
with unique global warming potentials and atmos-
pheric lifetimes. Focusing on methane emissions 
reduction may offer more immediate global warming 
mitigation.

• The shift toward achieving net-zero emissions by 
2030 has the capacity to generate 9 million new jobs 
in the energy sector, counterbalancing the anticipated 
loss of 5 million jobs in fossil fuel production. In the 
realm of clean energy, encompassing efficiency, auto-
motive, and construction, there is a potential for over 
30 million jobs, underscoring the opportunities in 
emissions-reducing technologies. However, such a 
transition necessitates workforce retraining and may 
encounter resistance from fossil fuel interests, posing 
the risk of social disruptions in affected communi-
ties. It is imperative for government support, char-
acterized by inclusive criteria, to play a vital role in 
facilitating economic development and securing pub-
lic acceptance.

• Closing the investment gap in emerging economies 
is crucial for equitable climate action and sustainable 
development. Increased financial and technical sup-
port, involving concessional and private sector capi-
tal, is essential. Without a substantial rise in clean 
energy investment, global efforts to combat climate 
change and achieve sustainability goals will face sig-
nificant challenges.

Prospects

1. If renewables are harnessed with a concerted effort 
to minimize GHG emissions, the prospects are 
promising. A substantial reduction in carbon foot-
print would be achieved, significantly contributing to 
global climate goals.

2. While the renewable energy sector holds great 
potential for innovation and job creation, it requires 
efforts to retrain and upskill the workforce from tra-
ditional energy industries. Adapting to this shift will 
be crucial in maximizing the economic benefits and 
ensuring a sustainable transition for all stakeholders 
involved.

3. Implementing targeted subsidies and financial incen-
tives to reduce the upfront costs of renewable tech-
nologies for consumers and businesses could also 
support the global climatic initiatives.

Authors viewpoint
The transition from petroleum to electrification and the 
fight against climate change present a multifaceted chal-
lenge that demands a debatable approach. There is no 
one-size-fits-all solution; instead, a careful evaluation of 
interconnected processes in energy extraction is required 
until renewable technologies can independently lead the 
way. While fossil fuels are currently necessary for decar-
bonization, powering EVs, and supporting renewable 
energy production, it is crucial to ensure their use aligns 
with UN sustainability goals. Despite notable progress, 
achieving the SDG7 goals demands ongoing efforts, 
including the establishment of comprehensive and uni-
fied GHG reduction standards, optimized resource allo-
cation, micro-assessment of GHG emissions, mandatory 
sustainable reporting, and the introduction of Green 
Scores. Developing economies face an inequitable burden 
in the transition, experiencing the impact of rising fossil 
fuel prices, particularly in Asia and Africa where 90 mil-
lion people struggle with energy poverty. This situation 
adversely affects education and income stability. There 
is an urgent call for investments in off-grid renewables, 
especially solar. Ongoing regional disparities show that 
Europe and the US lead in investments, making up 40%, 
while developing nations receive only 15%. Innovation, 
market-driven strategies, data transparency, fact verifi-
ability, global collaboration, and increased public aware-
ness about climate change are critical components of this 
clean energy transition.

Appendix
Methodology
This article was drafted by reviewing 67 primary research 
articles from the Scopus database from 2014 to 2023 
based on PRISMA approach [118] and [119]. These arti-
cles were curated through targeted searches using spe-
cific keywords combinations, "SDG7 AND Efficiency," 
"SDG7 AND Challenges," "SDG7 AND Africa," "SDG7 
AND China," "SDG7 AND India," "SDG7 AND Europe," 
"SDG7 AND Indonesia," "SDG7 AND Trade-offs," 7 AND 



Page 13 of 16Ramasubramanian and Ramakrishna  Sustainable Earth Reviews            (2023) 6:17  

Renewable Energy", "SDG7 AND Sustainable Develop-
ment", "SDG7 AND Energy Access", "SDG7 AND Clean 
Energy", "SDG7 AND Rural Electrification", "SDG7 AND 
Energy Transition", "SDG7 AND Policy Implementa-
tion", "SDG7 AND Technology Innovation", "SDG7 AND 
Energy Security", "SDG7 AND Carbon Emissions", "SDG7 
AND Green Economy","SDG7 AND Climate Resilience", 
"SDG7 AND Power Generation", "SDG7 AND Energy 
Poverty", "SDG7 AND Sustainable Practices", "SDG7 
AND Access to Electricity", "SDG7 AND Energy Afford-
ability", "SDG7 AND Decentralized Energy", "SDG7 AND 
Urban Energy", "SDG7 AND Energy Efficiency Measures" 
and "SDG7 AND Case Study." The initial pool of identi-
fied articles across all searches ranged from 150 to 170.

The final selection was refined based on relevance, 
and alignment with the theme, culminating in a set of 
67 research articles. The article also has used data from 
sources including the IEA, IRENA, World Economic 
Forum, EIA, and Our World in Data. The data for this 
study was gathered from various sources, curated, and sub-
sequently visualized using Microsoft Excel and Origin 3.2. 
Additionally, the study delves into the authors’ perspectives 
on potential future developments in this context. For the 
convenience of researchers and stakeholders interested in 
further scrutinizing or replicating our work, all the datasets 
employed in this study have been available for access in the 
’Datasets.zip’ archive, provided the original source solely 
owns the rights for the datasets and must be cited. Further-
more, to uphold transparency and acknowledge the contri-
butions of the original data sources, we have documented 
the copyrights and sources in the accompanying ’copyrights 
and sources.docx’ file.

Abbreviations
CO2  Carbon dioxide gas
CH4  Methane gas
O3  Ozone gas
N2O  Nitrous oxide
H2O  Water
ASEAN  Association of Southeast Asian Nations
BP  British Petroleum
CO2-e  CO2 equivalent
CFCs  Chlorofluorocarbon
EIA  U.S. Energy Information Administration
EMDE  Emerging Market and Developing Economies
EROEI  Energy Return on Investment
GDP  Gross Domestic Product
GWEC  Global Wind Energy Council
GWP  Global Warming Potential
IEA  International Energy Agency
IRENA  International Renewable Energy Agency
SEIA  Solar Energy Industries Association
SDG  Sustainable Development Goals
WRI  World Resources Institute

Glossary
Climate change  Long-term alterations in temperature, weather pat-

terns, and sea levels due to human activities, primarily 
the release of greenhouse gases

Decommissioning  Reducing material usage and waste generation by employ-
ing efficient technologies and sustainable practices

Dematerialization  Reducing material usage and waste generation by employ-
ing efficient technologies and sustainable practices

Fossil fuels  Non-renewable natural resources like coal, oil, and 
natural gas used for generation of energy (electrical)

LCA  Method to evaluate environmental impacts of a prod-
uct or process over its entire life cycle, from produc-
tion to disposal

Netzero  Achieving a balance between the greenhouse gases 
emitted and those removed from the atmosphere

Off-grid  Energy systems or communities independent of the 
main electrical grid, often relying on localized renew-
able sources

Paris Agreement  Global treaty adopted in 2015, aiming to limit global 
warming and promote climate resilience

Renewable energy  Power generated from sources that naturally replen-
ish, minimizing environmental impact

Renewables  Energy derived from naturally replenished resources 
like sunlight, wind, and water

SDG 13  Focuses on climate action, urging immediate steps to 
combat climate change and its impacts

SDG7  Targets universal access to affordable, reliable, sustain-
able energy by 2030

SDGs  United Nations’ set of 17 global goals to address social, 
economic, and environmental challenges by 2030

Sustainable energy  Power sources with minimal environmental impact, 
ensuring long-term availability and reducing harmful 
emissions
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